Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.В.ДВ.02.02 Наноматер	оиалы и нанотехнологии	
	наименование дисциплины (модуля) в соответствии с учебным планом	
Направл	пение подготовки / специально	ость	
	03.03.02	2 Физика	
Направл	пенность (профиль)		
	03.03.02.32 Фунда	ментальная физика	
			_
Форма	обучения	очная	
Год набо	opa	2021	

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили		
	доцент, А.С.Тарасов	
	попжность инипиалы фамилиа	

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цели преподавания — ознакомить обучающихся с методами получения и исследования наноматериалов, оценить особенности их свойств и структуры.

1.2 Задачи изучения дисциплины

В результате изучения дисциплины студент должен приобрести знания, умения и навыки, необходимые для его профессиональной деятельности в качестве бакалавра физики, а также получить сведения об особенностях исследования наноматериалов в конкретных технологиях.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ПК-2: Способен к выполненик	о физических экспериментов и (или)								
теоретических исследований по заданной методике, составлению описания									
проводимых исследований и анализу результатов									
ПК-2.1: Выбирает методы	физику и методы исследования наноструктур								
проведения физических	обобщать и обрабатывать информацию								
экспериментов и (или)	методами проведения физических экспериментов в								
теоретических исследований,	области нанотехнологий								
обобщения и обработки									
информации									
ПК-2.2: Оформляет	требования к оформлению лабораторных работ								
результаты научно-	представлять результаты выполненных лабораторных								
исследовательских и (или)	работ								
опытно-конструкторских	навыками обработки результатов экспериментов								
работ									
ПК-2.3: Составляет отчеты	принципы составления отчетов к лабораторным								
(разделы отчетов) по теме или	работам								
по результатам проведенных	оформить отчет к лабораторной работе								
экспериментов	навыками составления отчетов к лабораторным								
	работам и по результатам проведенных								
	экспериментов								

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	2 (72)	
занятия лекционного типа	1 (36)	
практические занятия	1 (36)	
Самостоятельная работа обучающихся:	1 (36)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			Кон	нтактная р	абота, ак	час.			
				Занятия семинарского типа					
		Занятия лекционного - типа						Самостоятельная	ятельная
No				Семинары и/или Практические		Лабораторные работы и/или		работа, ак. час.	
п/п	Модули, темы (разделы) дисциплины								
				занятия		Практикумы			
		D	В том	D	В том	D	В том	Daara	В том
		Всего	числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС
1. BE	ведение в мир наноматериалов. История развития технол	ологий получения наноматериалов.							
	1. Классификация материалов по размерам, форме и		-						
	структуре: кристаллические, поликристаллические,								
	аморфные твердые тела; объемные материалы, тонкие								
	пленки, наночастицы и наноструктуры. Путь развития								
	технологий получения наноматериалов. Обзор методов	6							
	синтеза кристаллических материалов: рост кристаллов								
	и тонких кристаллических пленок, получение								
	наночастиц, методы литографии и травления								
	материалов.								

2. Классификация материалов по размерам, форме и структуре: кристаллические, поликристаллические, аморфные твердые тела; объемные материалы, тонкие пленки, наночастицы и наноструктуры. Путь развития технологий получения наноматериалов. Обзор методов синтеза кристаллических материалов: рост кристаллов и тонких кристаллических пленок, получение наночастиц, методы литографии и травления материалов		7,2			
3.				6	
Обзор современных нанотехнологий и перспективы их ра	звития.	<u> </u>	1		
1. Обзор современных методов получения и исследования наноматералов: молекулярно-лучевая эпитаксия, плазмо- химическое реактивное осаждение, осаждение металлорганических соединений из газообразной фазы, атомно-слоевое осаждение; фотолитография, лазерная и электронная литография; жидкостное и сухое травление; рентгеноструктурный анализ, электронная и атомно-силовая микроскопия.	6				
2. Обзор современных методов получения и исследования нано-матералов: молекулярно-лучевая эпитаксия, плазмо- химиче-ское реактивное осаждение, осаждение металлорганических соединений из газообразной фазы, атомно-слоевое осаждение; фотолитография, лазерная и электронная литография; жидкост-ное и сухое травление; рентгеноструктурный анализ, электрон-ная и атомно-силовая микроскопия.		7,2			
3.				6	

1. Основные принципы и особенности разнообразных подходов синтеза наноматералов: молекулярно-лучевая эпитаксия, плазмо- химическое реактивное осаждение, осаждение металлорганических соединений из газообразной фазы, атомно-слоевое осаждение	6							
2. Основные принципы и особенности разнообразных подходов синтеза наноматералов: молекулярно-лучевая эпитаксия, плазмохимическое реактивное осаждение, осаждение металлорганических соединений из газообразной фазы, атомно-слоевое осаждение.			7,2					
3.							6	
4. Методы создания субмикронных планарных и вертикалы	ных струг	стур. Лит	ографич	еские под	дходы и	модифика	а-ция	
1. Фотолитография, лазерная и электронная литография как основные методы создания наноструктур. Альтернативные методы модификации поверхности и нанесения резистивных масок: импринт литография, локальное анодное окисление, перьевая нанолитография. Травление материалов: жидкостное химическое, сухое плазменно-химическое и реактивное, сухое ионное	6							
2. Фотолитография, лазерная и электронная литография как основные методы создания наноструктур. Альтернативные методы модификации поверхности и нанесения резистивных масок: импринт литография, локальное анодное окисление, перьевая нанолитография. Травление материалов: жидкостное химическое, сухое плазменно-химическое и реактивное, сухое ионное.			7,2					
3.							6	
	ходов: от	микроск	опии до (физическ	их свойс	тв.	6	

1. Основные методы исследования и характеризации наноструктур: рентгеноструктурный анализ, просвечивающая и сканирующая электронная микроскопия, атомно-силовая и туннельная микроскопия. Основные подходы исследования физических свойств наноматериалов и отличия от таковых для объемных материалов.	6					
2. Основные методы исследования и характеризации нанструктур: рентгеноструктурный анализ, просвечивающая и сканирующая электронная микроскопия, атомно-силовая и туннельная микроскопия. Основные подходы исследования физических свойств наноматериалов и отличия от таковых для объемных материалов.			7,2			
3.					6	
6. Свойства наноматералов. Получение материалов с заданн	ыми своі	іствами.				
1. Свойства наноматералов. Получение материалов с заданными свойствами.	6					
2.					6	
Всего	36		36		36	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Суздалев И. П. Электрические и магнитные переходы в нанокластерах и наноструктурах: [монография](Москва: URSS).
- 2. Ищенко А. А., Гиричев Г. В., Тарасов Ю. И. Дифракция электронов: структура и динамика свободных молекул и конденсированного состояния вещества: монография(Москва: Физматлит).
- 3. Альтман Ю. Военные нанотехнологии. Возможности применения и превентивного контроля вооружений: Рекомендовано учебнометодическим объединением вузов Российской Федерации по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации в качеств учебного пособия для студентов высших учебных заведений, обучающихся по специальностям 210601 "Нанотехнология в электронике" и 210602 "Наноматериалы" направления подготовки 210600 "Нанотехнология" и по специальностям 210104 "Микроэлектроника и твердотельная электроника" и 210108 "Микросистемная техника" направления подготовки 210100 "Электроника и микроэлектроника" (Москва: Техносфера).
- 4. Кузнецов Н. Т., Жабрев В. А, Марголин В. И., Новоторцев В. М. Основы нанотехнологии: учебник(Москва: Лаборатория знаний"" (ранее ""БИНОМ. Лаборатория знаний").
- 5. Раков Э. Г. Неорганические наноматериалы(Москва: Лаборатория знаний"" (ранее ""БИНОМ. Лаборатория знаний").
- 6. Чиганова Г. А. Введение в нанотехнологии: учебное пособие для студентов направления 222900.62 "Нанотехнологии и микросистемная техника" (Красноярск: СФУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Математические пакеты, электронные таблицы и базы данных, доступные через локальную сеть СФУ.
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. ИСС не требуется

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Учебно-лабораторная база кафедры физики твердого тела и нанотехнологий и аудиторный фонд СФУ.